Refine Your Search

Topic

Author

Search Results

Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Semi-Premixed Diesel Combustion with Twin Peak Shaped Heat Release Using Two-Stage Fuel Injection

2016-04-05
2016-01-0741
Characteristics of semi-premixed diesel combustion with a twin peak shaped heat release (twin combustion) were investigated under several in-cylinder gas conditions in a 0.55 L single cylinder diesel engine with common-rail fuel injection, super-charged, and with low pressure loop cooled EGR. The first-stage combustion fraction, the second injection timing, the intake oxygen concentration, and the intake gas pressure influence on thermal efficiency related parameters, the engine noise, and the exhaust gas emissions was systematically examined at a middle engine speed and load condition (2000 rpm, 0.7 MPa IMEP). The twin peak shaped heat release was realized with the first-stage premixed combustion with a sufficient premixing duration from the first fuel injection and with the second fuel injection taking place just after the end of the first-stage combustion.
Journal Article

Realization of Dual Phase High Temperature Heat Release Combustion of Base Gasoline Blends from Oil Refineries and a Study of HCCI Combustion Processes

2009-04-20
2009-01-0298
It was reported that n-heptane and toluene blended fuels (NTL series fuels) showed the dual phase high temperature heat release (DP-HTHR) combustion in a previous SAE paper [1]. DP-HTHR has the potential to enlarge the engine operational range to high load conditions and lower the engine combustion noise. Further research has been reported in this paper. Initial interests were in the combustion characteristics of a second “bump” in the high temperature heat release (2nd HTHR) in DP-HTHR, since this kind of two-stage combustion appears, when CO oxidation radically occurs over the 1450K temperature range.
Technical Paper

Performance Improvements in a Natural Gas Dual Fuel Compression Ignition Engine with 250 MPa Pilot Injection of Diesel Fuel as an Ignition Source

2016-10-17
2016-01-2306
The engine performance and the exhaust gas emissions in a dual fuel compression ignition engine with natural gas as the main fuel and a small quantity of pilot injection of diesel fuel with the ultra-high injection pressure of 250 MPa as an ignition source were investigated at 0.3 MPa and 0.8 MPa IMEP. With increasing injection pressure the unburned loss decreases and the thermal efficiency improves at both IMEP conditions. At the 0.3 MPa IMEP the THC and CO emissions are significantly reduced when maintaining the equivalence ratio of natural gas with decreasing the volumetric efficiency by intake gas throttling, but the NOx emissions increase and excessive intake gas throttling results in a decrease in the indicated thermal efficiency. Under the 250 MPa pilot injection condition simultaneous reductions in the NOx, THC, and CO emissions can be established with maintaining the equivalence ratio of natural gas by intake gas throttling.
Technical Paper

Optimization of Heat Release Shape and the Connecting Rod Crank Radius Ratio for Low Engine Noise and High Thermal Efficiency of Premixed Diesel Engine Combustion

2015-04-14
2015-01-0825
Premixed diesel combustion offers the potential of high thermal efficiency and low emissions, however, because the rapid rate of pressure rise and short combustion durations are often associated with low temperature combustion processes, noise is also an issue. The reduction of combustion noise is a technical matter that needs separate attention. Engine noise research has been conducted experimentally with a premixed diesel engine and techniques for engine noise simulation have been developed. The engine employed in the research here is a supercharged, single cylinder DI diesel research engine with a high pressure common rail fuel injection system. In the experiments, the engine was operated at 1600 rpm and 2000 rpm, the engine noise was sampled by two microphones, and the sampled engine noise was averaged and analyzed by an FFT sound analyzer.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

2002-10-21
2002-01-2853
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Journal Article

Molecular Structure of Hydrocarbons and Auto-Ignition Characteristics of HCCI Engines

2014-11-11
2014-32-0003
The chemical composition of marketed gasoline varies depending on the crude oil, refinery processes of oil refineries, and season. The combustion characteristics of HCCI engines are very sensitive to the fuel composition, and a fuel standard for HCCI is needed for HCCI vehicles to be commercially viable. In this paper, the effects of the structure of the fuel components on auto-ignition characteristics and HCCI engine performance were investigated. The engine employed in the experiments is a research, single cylinder HCCI engine with a compression ratio of 14.7. The intake manifold was equipped with a heater attachment allowing control of the intake air temperature up to 150 °C at 2000 rpm. Thirteen kinds of hydrocarbons, 4 kinds of paraffins, 3kinds of naphthenes, and 6 kinds of aromatics, were chosen for the investigation, and 20vol% of each of the pure hydrocarbons was blended with the 80 vol% of PFR50 fuel.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Influence of Fuel Volatility on Evaporation Characteristics of Diesel Sprays in Various Low Temperature and Low Density Surrounding Conditions Like at Early Pilot or Late Post Injections

2015-09-01
2015-01-1923
The diesel spray characteristics in early pilot and late post fuel injections in a constant volume chamber which can create the in-cylinder conditions of a diesel engine were visualized with high speed video. At the early pilot and late post fuel injection, there was a longer penetration of the liquid phase fuel spray as well as slower evaporation. With normal heptane the impingement of liquid spray with early pilot and post fuel injections can be avoided due to a faster evaporation. The penetration of liquid phase fuel spray increases significantly at low IMEP and late post injection conditions with diesel fuel.
Journal Article

Influence of Fuel Properties on Operational Range and Thermal Efficiency of Premixed Diesel Combustion

2013-10-15
2013-32-9054
The influence of fuel properties on the operational range and the thermal efficiency of premixed diesel combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen concentration with the ordinary diesel fuel is lower than with the primary reference fuels with the similar ignitability but higher volatility.
Technical Paper

Influence of Carbon Dioxide on Combustion in an HCCI Engine with the Ignition-Control by Hydrogen

2006-10-16
2006-01-3248
A homogeneous-charge compression-ignition (HCCI) engine system that was fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG) has been proposed in the previous research. Adjusting the proportion of DME and MRG can effectively control the ignition timing of the engine. In the system, both fuels are to be produced from methanol in onboard reformers utilizing the engine exhaust gas heat. While hydrogen contained in MRG has the main role of the ignition control, hydrogen increases with carbon dioxide in the methanol reforming. This paper investigates the influence of carbon dioxide on HCCI combustion engine with the ignition control by hydrogen. Both thermal and chemical effects of carbon dioxide are analyzed.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Improvements of Diesel Combustion and Emissions with Two-stage Fuel Injection at Different Piston Positions

2000-03-06
2000-01-1180
The fuel spray distribution in a DI diesel engine with pilot injection was actively controlled by pilot and main fuel injections at different piston positions to prevent the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separates the cores of the pilot and main fuel sprays. Experiments showed that an ordinary cavity without the central lip emitted more smoke, while smokeless, low NOx operation was realized with a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emits smoke.
Journal Article

Improvements of Combustion and Emissions in a Natural Gas Fueled Engine with Hydrogen Enrichment and Optimized Injection Timings of the Diesel Fuel

2022-01-09
2022-32-0095
In a natural gas fueled engine ignited by diesel fuel, the addition of hydrogen to the engine could be a possible way to improve thermal efficiency and reduce unburned methane which has a warming potential many times that of carbon dioxide as it promotes a more rapid and complete combustion. This study carried out engine experiments using a single cylinder engine with natural gas and hydrogen delivered separately into the intake pipe, and with pilot-injection of diesel fuel. The percentages of hydrogen in the natural gas-hydrogen mixtures were varied from 0% to 50% of the heat value. The results showed that the hydrogen addition has an insignificant effect on the ignition delay of the diesel fuel and that it shortens the combustion duration. The increase in the hydrogen ratio decreased the unburned hydrocarbon emissions more than the reduction of the amount of natural gas that was replaced by the hydrogen.
Technical Paper

Improvements in Thermal Efficiency of Premixed Diesel Combustion with Low Distillation Temperature Fuels

2013-10-14
2013-01-2624
The influence of fuel volatility on the thermal efficiency of premixed diesel combustion was evaluated with three ordinary diesel fuels with different distillation temperature distributions and also with a primary reference fuel with an octane number of 20 (PRF20) as a high volatility fuel. The experiments were conducted on a single-cylinder DI diesel engine for the premixed diesel combustion with a single injection at 11% intake oxygen concentration and conventional diesel combustion with a pilot fuel injection at 21% intake oxygen concentration. With the premixed diesel combustion, the indicated thermal efficiencies with the ordinary diesel fuels were lower than with PRF20 although the shapes of the rate of heat release and the combustion efficiencies calculated from the exhaust gas components were almost unchanged. With the conventional diesel combustion, the indicated thermal efficiencies with the ordinary diesel fuels and PRF20 were similar.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
X